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ABSTRACT

Jump discontinuity balances in continuum theory are well known and are fre-
quently applied in the literature for single-phase systems. Jump discontinuity bal-
ances between dispersed multiphase regions have been derived for multiphase
volume averaging continuum theory. However, multiphase region jump balances
have not received comparable attention in the literature in multiphase applications.
In this work the continuum equations and jump balances are summarized and
compared for the cake filtration and cake drainage processes under air pressure.
The comparison shows the jump conditions for the fluid and solid phases are easily
decoupled in cake filtration. On the other hand, during the drainage process the
mass discontinuity balances for the gas and liquid phases are coupled if there is
significant mass transfer between the phases at the drainage boundary. Further-
more, the momentum discontinuity balances are also coupled when the capillary
forces are significant.

INTRODUCTION

The derivation and interpretation of the volume-averaged continuum
equations are well established (1-4). Continuum models for cake filtration
are frequently reported in literature [e.g., Tiller (5), Wakeman (6), and
Chase and Willis (7)]. The equations for cake filtration are evaluated using
local experimental data (pressure and porosity) which make it possible to
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apply the continuum equations with only concern for the jump conditions
between the cake and the slurry approaching the cake (7, 8).

Continuum models for evaluating the pressure loss across the whole
filter assembly must include the resistance to flow through the filter me-
dium and any support structures such as the wire mesh that may be used
to provide structural support to paper and cloth media. The two-resistance
model traditionally applied in the literature (9), in which the cake and the
medium resistances are summed to give the overall resistance, accounts
for the medium resistance provided that the effect of the cake on the
medium is included in the evaluation (10).

The addition of the two resistances in the traditional model has inherent
assumptions about the jump discontinuity conditions between the multi-
phase regions. While some of the conditions may appear trivial for cake
filtration when only one fluid phase is present, the purpose of this paper
from an academic perspective is to bring attention to these jump conditions
and how they can differ when air displaces the liquid phase during
drainage.

The cake filtration process considered here is the simple rectilinear one-
dimensional pressure filter shown in Fig. 1. In this process there are five
distinct regions which have significantly different material properties

SLURRY INLET

S

A

FILTER CAKE

{ FILTER MEDIUM
mtll SUPPORT PLATE

FILTRATE OUTLET

FIG.1 One-dimensional rectilinear flow filter cake assembly. Five distinct regions are the

slurry above the cake, the cake, the filter medium, the support plate, and the filtrate. The

boundaries between the regions are identified by their position in the z-direction as indicated
on the left side of the figure.
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(such as differences in materials, porosity, and pore size). The different
regions are the slurry above the cake, the cake, the filter medium, the
support plate under the medium, and the filtrate. The discontinuities or
boundaries between the regions are identified at the marked positions in
the z direction in Fig. 1: as the boundary between the slurry and cake at
z = L., as the boundary between the cake and medium at z = Ly, as
the boundary between the medium and the support plate at z = L, and
as the boundary between the support plate and the filtrate at z = 0.

During the drainage process a gas such as air displaces the liquid phase
in the cake, as shown in Fig. 2. Shown in Fig. 2 within the cake is the
drainage boundary between the portion of the cake filled with the gas
(with residual liquid trapped in pores or adsorbed onto the solid surface)
and the portion of the cake saturated with the liquid phase. This drainage
boundary moves downward with velocity w,. This boundary identifies
one more discontinuity that must be included in the drainage model. This
drainage boundary is modeled here as being within the cake only. This
boundary condition can easily be extended to the filter medium and sup-
port plate if necessary.

These jump balances will be combined in future papers with the contin-
uum balances for cake filtration and other similar multiregioned-dispersed-
multiphase processes. These balances will help us to account for the inter-
actions between the regions, such as when clogging occurs on a filter
media, and give us more tools for predicting and interpreting experimental
data.

] | | GASINLET
2ol —
GAS REGION
DRAINAGE =
BOUNDARY . Wy FILTER CAKE
Z=LI'“-
2y ~ FILTER MEDIUM
20 - | SUPPORT PLATE

FILTRATE QOUTLET

FIG.2 Jump discontinuity within the filter cake due to the displacement of the liquid phase
by a gas.
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PHASE AND REGION CONTINUUM EQUATIONS

The a-phase mass (Eq. 1) and momentum (Eq. 2) balances from contin-
uum theory are

Ae“p™
(€ P ) + V_(eogpava) = 0 (1)
at
a(eapava) (PRI a f o o QO
—at———+V-(epvv)+eVP+F + Vi* —e*pg =0 (2)

for a two-phase system with no mass transfer and no chemical reactions
(3). The mass balance in Eq. (1) has terms accounting for the accumulation
and convection of mass. The momentum balance in Eq. (2) has terms,
from left to right, accounting for the accumulation of inertia, inertial con-
vection, pressure force, drag force between the phases, the deviatoric
stress term, and the force of gravity.

Equations (1) and (2) are the basis for the equations derived here. The
process is assumed to be a one-dimensional flow system with variations
in the z-direction and uniformity in all other directions. Also, the intrinsic
phase densities, p>, are assumed to be constant. The mass balance of Eq.
1 reduces to

0e™ | d(e*vy)

ot 3z 0 3

The momentum balance in Eq. (2) also simplifies. Willis et al. (11) de-
duced through dimensional analysis that the inertial terms and the fluid
stress term are insignificant compared to the pressure and drag force
terms. Neglecting the insignificant terms, then for the one-dimensional
flow problem considered here, the momentum balance in Eq. (2), reduces
to

aP

¢ 00 a _
i + Fd=0 @

for the fluid-phase momentum, and to

oP o013,
s £ _ eS(nS — of —_ Jd —
€ T oy €0 —plg — Fo (5
for the solid-phase momentum, where the piezometric pressure, P, is the
combined fluid phase pore pressure and the gravity force on the fluid
phase

P = P' — pfg,z (6)
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The phase mass balances in Eq. (3) and the phase momentum balances
in Egs. (4) and (5) apply to each of the regions (cake, filter medium, and
porous plate). Though the equations are the same, the regions may behave
differently due to their material makeup. The material properties which
make the different regions distinguishable are introduced through constitu-
tive relations for the interphase drag force, F¢, and the solid phase stress,
T3z,

The phase balances are summed to obtain the region balances. The
region mass balance is

0
5 (el + €u3) =0 @)

where the sum of the volume fractions is unity, €/ + € = 1. This region
mass balance indicates that the quantity (e'of + €5%) is independent of
the z position though it may still be a function of time.

The region momentum balance is

[
az 174

- e —pNg. =0 (8)

which balances the pressure force, the solid stress, and the gravitational
(buoyant) forces.

The above phase and region continuum balances account for the kine-
matics and dynamics of the materials within a given region. They are
applicable to the cake filtration process shown in Fig. 1. For the drainage
process, Eqgs. (1) and (3) must be modified to include a term for the mass
transfer of residual liquid from the solid matrix to the gas phase if the
mass transfer is significant. Also, the residual liquid effects on the drag
force between the phases must be accounted for such as through the rela-
tive permeability (12).

The transfer of mass and momentum across a boundary between two
regions is accounted for in the region jump discontinuity balances which
are now considered.

DISCONTINUITY BALANCES BETWEEN REGIONS

The continuum scale equation for an arbitrary property & is given as

o
M09 Vo) + Vi — plf + g) = 0 ©
where i is the flux of property ¢ and the quantities f and g represent the

body and external sources of property ¢. The jump balance is obtained
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FIG. 3 Material volume containing two regions separated by surface Aan.

by integrating Eq. (9) three times, once over each of the region volumes
Va and Vg, and once over the combined material volume, Vi, shown in
Fig. 3. When the two integral equations obtained from the region volumes
are subtracted from the integral equation for the combined material vol-
ume, the general jump balance is obtained (4):

[pada(w — va) — ial'nag — [psds(W — vB) ~ igl'nag = 0 (10)

where subscripts A and B refer to the two regions, w is the velocity of
the moving boundary (surface A sn), and nap is the unit area normal vector
for the boundary between the two regions.

For most processes there is not a generation of property ¢ at the bound-
ary, and the right-hand side of Eq. (10) is zero. However, for processes
in which a generation may occur, such as a chemical reaction at the bound-
ary, then the zero on the right-hand side of the equation would be replaced
with a generation term.

MASS DISCONTINUITY BALANCES FOR CAKE
FILTRATION
The region mass discontinuity balance is
[pava — W) — pa(ve — W)]nap = 0 an

When only two phases (fluid and solid) are present, the region densities
and velocities are related to the phase intrinsic densities and volume mass
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averaged velocities by

p = €pf + &p° (12)
pv = elpfvf + epsv® (13)

When there is no mass transfer between the phases, the convections
of each phase across the boundary are linearly independent of each other.
Equations (12) and (13) can be substituted into Eq. (10) and the linear
independence applied to separate the terms for each of the phases to obtain

[h(vh, — W2) — €n(@h, — w,)] = 0 (14)
[GSA('UASAZ - Wz) - ESB(USBZ - Wz)] =0 (15)

for a one-dimensional system.
Between the slurry and the filter cake in the cake filtration process the
fluid-phase mass discontinuity can be written as

(Ef(vg - Wz))SLZLllfRY = (Ef(vg - Wz))CZA;IL(E (16)

where the subscripts SLURRY and CAKE indicate which region side of
the boundary that the term represents. The subscript z = L. indicates
the z-position of the boundary.

As the slurry encounters the boundary between the cake and the slurry,
solid particles are added to the cake surface, which causes the surface to
move with time. This movement is represented by (w,),—1._.

At the cake—~medinm, medium-plate, and plate~filtrate region bounda-
ries the boundary is normally stationary and (w.) is zero. This also implies
that the solid phase velocity is zero. For these boundaries the fluid phase
mass discontinuity balance has the form

[ehoh, ~ envb,] = 0 an

If the filter medium is very thick and compressive, then it may be possi-
ble to measure the movement of this boundary. In this case the boundary
velocity, (w,), would be nonzero. Also, if the solid particles can penetrate
into the medium or plate or bleed through into the filtrate for these latter
three boundaries, then the solid phase velocities also would be nonzero.

At the plate—filtrate boundary, Eq. (17) translates into a relation be-
tween the fluid phase velocity, (v£), and the volumetric flow rate, Q:

A(Efvg)PI;f:\}"E = -0 (18)

where the minus signs account for the fluid velocity in the minus z-direc-
tion. Furthermore, through Eqs. (7) and (17) for zero solids velocity in
the plate and medium, Eq. (18) extends to the medium-plate and the
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cake—medium boundaries to obtain

A(Efvg)MEzl:)]I_UM = A(Efvt;)CZQLKE = —-(Q (19)

Before leaving the mass discontinuity balances for cake filtration, there
is a useful relationship for the rate of cake growth that makes use of the
mass discontinuity conditions listed above. Starting with the filter cake
region, the fluid phase mass balance in integral form is

Le /9t a(efot
Lm (5 » )dz -0 (20)

which can be integrated by applying the fundamental theorems of calculus
and the Leibnitz formula (13) to obtain
d

Lc
ar f €'dz — (€Ww,)cake + (€W)cake + (€9h)cake — (€W)cake = 0
Lm z=L. z=FLg z=L, 2=Lpy

@1

The integral in the first term of Eq. (21) is equal to the cake height, (L.
— L.,), times the cake average porosity, €. The product rule of calculus
can then be applied to separate the time derivative of the product (L. —
L)€t

Also, the fluid phase discontinuity conditions in Eq. (16) at z = L. and
Eq. (19) at z = L, are applied to Eq. (21) to relate the boundary terms
to measurable quantities at the boundaries. Now Eq. (21) becomes

def’
(Le = Lu) S + € 02)mr, + (04 ~ w))seygry + Q/A = 0

(22)

where the time derivative of L. is equal to the boundary velocity,
(Wz)z=Lc-

As an approximation, the fluid and solid phase velocities are assumed
to be the same in the slurry above the cake. Hence these two velocities
must be equal to the superficial velocity or the flow rate divided by the
cross-sectional area:

v sSLURRY = U5 sLurry = —Q/A (23)

Furthermore, Willis et al. (14) and Willis and Tosun (15) report the time
rate of change of the cake average porosity to be negligible for most cakes.

Applying the above simplifications to Eq. (22), the macroscopic fluid
phase mass balance takes the form
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(Wo)o—r (€ — €sLurry) + (1 — EfSLURRY)Q/A =0 (24)

Defining the function G as the instantaneous rate of cake growth to the
filtrate volumetric flow rate as

G(t) _ A(wz)z=Lc (25)
0
then Eq. (24) becomes
£
G(t) - (1 - GSLURRY) (26)

T
(esLurry — GSAKE)

Hence, Egs. (25) and (26) provide a way of estimating the rate of cake
growth, (w;),-1_, as a function of the slurry and cake average porosity.

MOMENTUM DISCONTINUITY BALANCES FOR CAKE
FILTRATION

The region momentum discontinuity balance is given by
[pava(va — W) + PaAd + 74 — ppve(ve — W) — Pgd — 7h]'nag = 0
@n

For the one-dimensional process that is being considered here, and where
the inertial terms are insignificant, Eq. (27) reduces to

[PA + TZZZ - PB - TSBZZ] =0 (28)

In the filtration process considered here, the same fluid is in the regions
on each side of the boundaries. This results in the pressures and stresses
on each side of the boundaries being the same, and the pressure and
stresses can be decoupled in Eq. (28) to obtain

Pa=Pp 29
and
ThAzz = TBzz (30)

At the slurry—cake boundary the solid phase structure in the slurry is
fluidlike and cannot support any compressive stress. The stress on the
solid phase at this boundary is therefore zero:

T3z SLURRY = 0 3D

Also, at the plate—filtrate boundary the stress on the solid phase in the
z-direction is similarly zero. Some stresses must occur within the plate



11:52 25 January 2011

Downl oaded At:

674 CHASE AND KANEL

to transmit the load of the stress at the medium-plate boundary to the
walls of the filter assembly. The total force by the walls to hold the plate
stationary, FpLaTg, i$ related to the solid stress at the medium-plate
boundary by

Friate = AlT iz)PI{éLTE (32)

where A is the cross-sectional area to flow for the filter assembly.

When the fluids on either side of the boundary are immiscible, as in
the drainage process shown in Fig. 2, then the discontinuity balances are
different than those described above. The drainage boundary condition is
now considered.

DISCONTINUITY BALANCES FOR CAKE DRAINAGE

Many of the discontinuity balances derived above also apply to the
drainage process. At the gas—cake boundary at z = L., the cake no longer
grows due to particles from the slurry adding to the cake. Hence, this
boundary may be stationary. However, this boundary may move with
velocity (w,),-1,, as indicated in Eq. (16) where the gas phase replaces
the slurry if there is significant swelling or shrinkage as the cake is drained.

The other difference is the additional discontinuity balance required for
the drainage boundary shown in Fig. 2. Let the subscript GAS indicate
the portion of the cake filled with the gas phase and let the subscript
LIQUID indicate the liquid-saturated part of the cake. At this boundary,
capillary forces cause the gas-phase pressure to differ from the liquid-
phase pressure across this boundary. The pressure term, P, that appears
in the continuum equations and the discontinuity equations refers to the
measurable pressures of the continuous gas and liquid phases on each side
of the boundary. It does not refer to the pressures within the discontinuous
residual liquid droplets left behind in the cake because the free liquid is
displaced by the gas phase.

The capillary forces at the drainage boundary cause a pressure differ-
ence between the gas and the liquid phases. This pressure difference is
called the capillary pressure, Pcap,

Priquip — Pcas = Pcap (33)

From Eq. (28) the capillary pressure also relates the discontinuity in
the stresses in the solid phase at the boundary. Combining Eqs. (28) and
(33), the stresses are related by

[t&aszz — TLiQuipzz] = Pcap (34)
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The mass balances given in Egs. (14) and (15) do not apply in general
to the drainage boundary because there are now three phases to be ac-
counted for: the solid phase, the liquid phase, and the gas phase. Equa-
tions (12) and (13) become

p = €p! + e2p® + €p° 35
pv = e'plv! + €2pevE + €5pv* (36)

When Egs. (35) and (36) are combined with the region mass balance in
Eq. (11) for a one-dimensional process, we get

(p'e'el + pBetuf + pievi)gas — (p'€' + p%e® + p°€S)gasw. —0

— (p'e'dl + pBe®f + p°e*vi)Liquip + (ple' + p%e® + p°e®)LiquinW.

37

To make this equation more manageable, we note that the liquid phase
that remains in region A after the gas has pushed out the free liquid,
denoted by (p'e)cas., is the residual liquid that is trapped within the solid
matrix and has the same velocity as the solid phase. Also, within the
LIQUID region there is no gas phase present. Equation (37) simplifies to

(p2etvE + (p'e! + p€e*)ui)oas — (p'e' + p%€® + p°loasw. | 0
— (p'e'vl + p*evi)Liquip + (p'€! + p€*)LiouiDW:

(38)

Furthermore, in a drainage process the movement of the solid phase is
usually insignificant compared to the movement of the fluid phases and
the drainage boundary. Also, the volume fraction of the solid phase can
be assumed to be the same on each side of the boundary. Hence, Eq. (38)
simplifies to

[(p%eBu8)gas — (p'€' + pfeB)gasw, — (p'e'vl)riquip + (p'€)riquipwz] = 0
(39

Finally, if the rate of mass transfer per unit area between the liquid
phase and the gas phase (by evaporation) is significant at this boundary,
then we decouple the phases in Eq. (39) by introducing the mass transfer
term, E. The equations decouple as

ngAsﬁéAs(Wz - UéASz) =E (40)

1
PiIQUIDéLIQUID(Wz - UL[QUIDz) - plGASEhASWz =FE 41)
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Equation (40) relates the gas velocity to the drainage boundary velocity
and the rate of mass transfer between the gas and liquid phases at the
boundary. If no mass transfer occurs, then the gas velocity and the drain-
age boundary velocity are equal. Equation (41) relates the liquid velocity
to the velocity of the drainage boundary velocity, the rate of mass transfer
between the gas and liquid phases, and the amount of residual liquid left
behind.

A pressure difference between the cake and medium regions such as
the capillary pressure given in Eq. (33) can also occur during surface
clogging of the medium. This phenomena may be related to cake com-
pressibility and depth clogging of the medium, but these latter effects are
modeled by appropriate constitutive relations in Egs. (4) and (5). Surface
clogging is a boundary effect, such as straining at the surface in which
cake particles plug pores of the medium just at the boundary, and results
in a pressure difference that must be accounted for with a pressure drop
function analogous to Pcap as applied in Eq. (33).

CONCLUSIONS

The work here shows how the general jump discontinuity balance is
applied between multiphase regions to obtain discontinuity balances for
the gas, liquid, and solid phases. Specific discontinuity balances are ob-
tained for the processes of cake filtration and liquid drainage for a filter
cake. The effects of mass transfer and capillary pressure are accounted
for in the discontinuity balances for the drainage boundary which do not
normally appear in the discontinuity balances for the multiphase regions
in the filter cake. These discontinuity balances can now be applied to
continuum models for solving the continuum equations for each separate
multiphase region.
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NOTATION
A cross-sectional area of filter assembly
Aap area of boundary between multiphase regions A and B
E rate of mass transfer between the gas and liquid phases

across the drainage boundary
F? drag force between phases
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force

ratio of cake growth rate to filtrate rate
flux of arbitrary property ¢

z-position at slurry—cake boundary
z-position at cake—medium boundary
z-position at medium-plate boundary
area normal vectors in Fig. 3
piezometric pressure defined by Eq. (6)
fluid phase pore pressure

capillary pressure

volumetric flow rate

time

A and B region volumes in Fig. 3
a-phase average velocity

velocity of boundary

axial position as measured from the plate-filtrate
boundary

a-phase volume fraction

region average a-phase volume fraction
a-phase intrinsic density

stress on solid phase matrix

Kronecker delta

arbitrary material property

Superscripts/Subscripts

a,f, s

g, 1

z

CAKE
MEDIUM
PLATE
SLURRY
GAS

LIQUID

z=L

a-phase, fluid phase, solid phase quantity

gas and liquid phase quantities at the drainage boundary
z-component of a vector or tensor

quantity evaluated in the cake region

quantity evaluated in the medium region

quantity evaluated in the plate region

quantity evaluated in the slurry region

guantity evalvated in the gas-occupied portion of the
draining cake

quantity evaluated in the liquid-saturated portion of the
draining cake

quantity evaluated at boundary at z = L
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